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Abstract. The q-analogue coherent states|z〉q are used to identify some of the canonical
physical properties of the single-mode of theq-analogue quantized radiation field. Macro-
deformed coherent states (CSs) with striking number and phase signatures are found to arise as
q → ∞, equivalently asq → 0. In particular, the CS expectation value of the mean number
of particles,q 〈z|N |z〉q ≈ Sq (log10 |z|2) whereSq (log10 |z|2) is a ‘stair function’ with equally
spaced, integer steps as log10 |z|2 increases. Macroq-deformation provides a simple model
with one region which simultaneously exhibits features from two distinct regions in the well
known bosonic case: the quantum mechanical limit with occupation number|n〉 states and the
semi-classical limit with|z〉 coherent states where|z| is large. The role of the deformation
parameter ‘q ’ is to enable a smooth interpolation between the classic bosonic CSs (q = 1) and
the fermionic CSs (q = ∞ or 0).

1. Introduction

The objectives of this paper are limited. The first is to investigate macroq-deformations,
q → ∞ (equivalentlyq → 0), of the q-analogue coherent states,a|z〉q = z|z〉q , and
of the associated single-mode of theq-analogue quantized field. The second is to use
the simplicity of the behaviours in this region of the coherent state expectation values,
q〈z|Ô|z〉q , to investigate general physics issues associated withq-deformation in quantum
mechanics and/or in quantum field theory.

The history of the idea ofq-bosons is something of a reversal of the well known
logic for ordinary bosons (photons, phonons, . . .) which correspond toq = 1. In 1989, in
analogy with Schwinger’s oscillator realization of ordinary Lie algebras, MacFarlane and
Biedenharn [1, 2] independently introduced aq-oscillator realization,J+ = a

†
1a2, . . . , of the

new quantum algebras, e.g. ofSU(2)q . Recent reviews of quantum algebras and of their
applications in mathematical physics include [3]. Theq-oscillator commutation relations
are

aia
†
i − q±1/2a

†
i ai = q∓Ni/2 i = 1, 2 (1)

with [ai, a
†
j ] = 0, for i 6= j, . . . (see below). Following their work, it was then reasoned

that if such symmetries were to occur in nature, it would be natural for there also to exist
q-bosons and aq-analogue quantum field which has suchq-oscillators as its normal modes.

† E-mail address: wkimler@epics.net
‡ E-mail address: cnelson@bingvmb.cc.binghamton.edu
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So in order to recognize the presence ofq-bosons, one needs to know their canonical
physical properties. In particular, what are their number and phase signatures? Since quasi-
classical coherent states approximately characterize many types of cooperative behaviour in
the usual bosonic (q = 1) case, One can use theq-analogue coherent states|z〉q to study
and identify experimental signatures of a generic single-modeq-analogue quantized field
for cooperative phenomena.

Accordingly, in [4] the|z〉q ‘classical limit’ where|z| is large was studied for fixedq
values near to the usualq = 1 bosonic region, specifically for' 1

16 6 q < 1. The focus in
the present paper is, instead, on the region of macrodeformation: we hold|z| fixed and study
the behaviour of CS expectation values,q〈z|Ô|z〉q , asq → ∞ (equivalently asq → 0). In
this region, remarkably simple number and phase signatures are found to occur. These are
properties of the|z〉q CSs of the system (e.g. of aq-bosonic cooperative phenomenon) and
are to be kept mentally distinct from properties exhibited by individualq-bosonic quanta in
an occupation number, or Fock, basis.

For an easy overview of what occurs in the case of macroq-deformation, the reader
can simply examine the first eight figures and their captions. In the associated text we use
the methods of [5] to analytically obtain CS expectation valuesq〈z|Ô|z〉q to leading order
in q as q → 0. These analytic results agree with the numerical results forq = 10−15

which are displayed in the figures. Additional figures forq = 10−6 are given in [11].
In sections 2 and 3 number and phase properties [6–10] of the macrodeformed|z〉q states
are respectively analysed. In section 4 and appendix C, the associated standard number-
and-phase uncertainty relations [7, 10] are treated. Section 5 contains several concluding
remarks.

2. Number properties

2.1. q-oscillator commutation relations and CSs

In the Heisenberg representation, we consider a specific mode of theq-analogue radiation
field having a specific polarization̂ε where forq real

aa† − q±1/2a†a = q∓N/2 (2)

with N the number operator, and with [N, a†] = a†, [N, a] = a, and [a, a] = 0. We
suppress both the subscriptk and the polarization vectorŝε for theq-analogue electric and
magnetic fields, etc.

In the |n〉q occupation number basis,〈m|n〉 = δmn, and

a†|n〉 =
√

[n+ 1]|n+ 1〉 a|n〉 =
√

[n]|n− 1〉 (3)

with the q-boson vacuum|0〉q such thata|0〉q = 0. Normally we will suppress theq
subscript on the number basis states, etc. BesidesN , there are twoq-deformed number-like
operators [N ] and [N + 1] with

a†a|n〉 = [N ]|n〉 = [n]|n〉
aa†|n〉 = [N + 1]|n〉 = [n+ 1]|n〉. (4)

The ‘bracket number’ is defined by

[x] ≡ qx/2 − q−x/2

q1/2 − q−1/2

≡ sinh{(x ln q)/2}
sinh{(ln q)/2} (5)
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and [x] is invariant underq ↔ 1/q. So without loss of generality, forq real it suffices to
fix 0 < q 6 1 and to study the macrodeformed region by lettingq → 0.

The q-analogue CSs satisfy

a|z〉q = z|z〉q (6)

wherez is a complex number,z = |z|eiθ . Up to a phase choice,

|z〉q = N(z)

∞∑
n=0

zn√
[n]!

|n〉q (7)

whereN(z) = eq(|z|2)−1/2. Theq-exponential function [5] is defined by the absolutely and
uniformly convergent power series

eq(z) =
∞∑
n=0

zn

[n]!
(8)

where [n]! = [n][n− 1] . . . [1], [0]! = 1. Sum rules of the reciprocals of the zeros ofeq(z)

play a role in expansions ofq-analogue special functions analogous to that of the Bernoulli
numbers in ordinary series expansions†.

Throughout this paper all expectation values will be in the CS basis

〈Ô〉 ≡ q〈z|Ô|z〉q (9)

unless noted otherwise.

2.2. Stair function behaviour of〈z|N |z〉 in macrodeformed region

In the CS basis, the expectation value of the number operator,N , is

〈z|N |z〉 = eq(|z|2)−1
∞∑
n=0

|z|2nn
[n]!

(10)

whereas for the deformed number operator it is

〈z|[N ]|z〉 = |z|2. (11)

For convenience, figures in the present paper are shown against|z|2, or against
log(|z|2) ≡ log10(|z|2). In investigating the region of macroq-deformation, we hold|z|2
fixed and takeq → 0; in the figures we setq = 10−15 (for 10−6 see [11]).

Much of the simple behaviour which occurs in the macrodeformed region can be
understood because the macrodeformed CSs are actually ‘pseudo-Fock states’; while it
is essential to include all number basis components in the expansion of|z〉q so as to satisfy

a|z〉q = zq |z〉q (12)

† For instance, forp complex, in analogy to the Riemann zeta function one can define foreq(z)

ζe(p) ≡
∞∑
i=1

(
1

zi

)p
wherezi are the zeros ofeq(z). Then for|z| < |z1|,

ln{eq(z)} = −
∞∑
n=1

1

n
ζe(n)z

n.

Compare equations (56)–(59) in [5]. Asq → 0, there is the asymptotic formulaζe(p) → exp(ιπp){1−qp/2}−1(1−
q)p whereas forEq(z) for q > 1 there isζE(p) = exp(ιπp){qp − 1}−1(q − 1)p .
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Figure 1. Behaviour of the mean value of the number operator〈N〉 ≡ q 〈z|N |z〉q as |z|2 varies
for fixed q in the region 1

16 6 q < 1. For ordinary bosons (q = 1), there is a linear〈N〉 = |z|2,
instead of the approximately logarithmic log(|z|2) dependence, equation (32), forq 6= 1. The
next two figures show what occurs for macroq-deformation, i.e. asq → ∞ (equivalently, as
q → 0).

nevertheless, in evaluating CS expectation values,〈z|Ô|z〉, one or two Fock components
frequently dominate asq → 0. For instance, figures 1–3 indicate that such a dominance is
occurring because in the region of macrodeformation

〈z|N |z〉 ≈ Sq(log(|z|2)) (13)

i.e. the mean value ofN approaches a ‘stair function’Sq(log |z|2) (see appendix A).
In particular, using [x] we define|z|2 values for ‘step’ states

|zs |2 ≡ [s + 1
2] s = 0, 1, 2, . . .

≈


q−(2s−1)/4

(1 − q)
s 6= 0

(q−1/4 + q1/4)−1 s = 0

(14)

and for ‘riser’ states

|zr |2 ≡ [r + 1] r = 0, 1, 2, . . .

≈


q−r/2

(1 − q)
r 6= 0

1 r = 0.

(15)

More precisely, one would refer to the|zr〉 states of equation (15) as ‘mid-riser’ states, for
instance ‘quarter-riser’ states|zb〉 with |zb|2 = [b+ 3

4], b = 1, 2, . . . , can be introduced (see
appendices C and D).
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Figure 2. Behaviour of〈N〉 for fixed q = 10−6. Because of the manifestq ↔ 1/q symmetry,
without loss of generality we can consider 0< q 6 1. (On the horizontal axis, the symbol log
represents log10, i.e. logarithms to the base 10.)

Figure 3. Behaviour of〈N〉 for fixed q = 10−15. The following figures are all for this smallerq
value because the dominant signatures, e.g.〈N〉 has approximately a ‘stair function’ dependence
on log(|z|2) per equation (13), are more visible forq = 10−15 (for q = 10−6 see [11]). For
log(|z|2) negative, there is a flat ‘landing’ with〈N〉 ' 0. Notice that the first ‘step’ is labelled
by the first positive integer,s = 1, since〈N〉||zs 〉 ' s for each step.

This stair function† behaviour asq → 0 can also be shown analytically by the methods
in [5]. Whenq is small orn large, the deformation ofn can be approximated,

[n] = q(1−n)/2 − q(1+n)/2

(1 − q)

≈ q(1−n)/2

(1 − q)
(16)

† Figure 3 has the same structure as that observed in the quantum Hall effect in the plot of the normalized inverse
Hall resistance (h/e2RH) against the normalized ratio (nhc/eB) of the electron number density and the magnetic
field. For example, figure 3 can be compared with figure 1.2 of [12]. The longitudinal resistance,RL, has a similar
structure to that ofI1(|z|) displayed later in figure 5.
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and

[n]! = q−n(n−1)/4

(1 − q)n
{(1 − q)(1 − q2) . . . (1 − qn)}

≈ q−n(n−1)/4

(1 − q)n
(17)

which is the analogue of the Stirling approximation ofn!. The last lines in equations (14)
and (15) follow by equation (16).

So from equation (7), associated with equations (14) and (15), are the ‘approximate
Fock states for|zs〉 and |zr〉’

|zs〉 −→
q→0

eisθ |s〉 (18)

with

〈N〉||zs 〉 → s 1N ||zs 〉 → 0

and

|zr〉 −→
q→0

1√
2

eirθ {|r〉 + eiθ |r + 1〉} (19)

with

〈N〉||zr 〉 → r + 1
2 1N ||zr 〉 → 1

2.

Note that there is a fixed phase relation, determined byθ = arg(z), between the two
dominant states in|zr〉. Such a dominance, for a fixed|z|2 region, by a few terms in the series
also occurs for theq-exponential functioneq(|z|2), see section 2 of [5]. This dominance
property is not surprising since a zero-order entire function will possess polynomial-type
behaviour. An improved approximation would be to successively include additional adjacent
terms, as|r − 1〉 and |r + 2〉 components in equation (19) for the (mid)riser state, etc.

Analytically, by the approximation of equation (17) we obtain directly from
equation (10) the leading order inq corrections: for the step values (s > 0)

eq(|zs |2) =
∞∑
n=0

[s + 1
2]n

[n]!

= [s + 1
2]s

[s]!

∞∑
n=0

[s + 1
2]n−s

[s]!

[n]!

−→
q→0

[s + 1
2]s

[s]!
{1 + 2q1/4 + 2q + O(q9/4)} (20)

and
∞∑
n=0

[s + 1
2]nn

[n]!
−→
q→0

s[s + 1
2]s

[s]!
{1 + 2q1/4 + 2q + O(q9/4)} (21)

so

〈N〉||zs 〉 = eq(|zs |2)−1
∞∑
n=0

[s + 1
2]nn

[n]!

−→
q→0

s{1 + O(q5/4)} s > 0 (22)
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where the possibleO(q1/4) andO(q) corrections have cancelled. (TheO(q5/4) correction
in equation (22) arises because the approximation of equation (17) neglectsO(q) corrections
from the braces factor in the first line.) Similarly, for the ‘riser’|zr |2 values forr > 0,

eq(|zr |2) −→
q→0

[r + 1]r

[r]!
{· · · + q1/2 + 1 + 1 + q1/2 + · · ·}

−→
q→0

[r + 1]r

[r]!
2{1 + q1/2 + O(q3/2)} (23)

∞∑
n=0

[r + 1]n

[n]!
−→
q→0

[r + 1]r

[r]!
2(r + 1

2){1 + q1/2 + O(q3/2)} (24)

so

〈N〉||zr 〉 −→
q→0

(r + 1
2){1 + O(q3/2)} r > 0 (25)

where the possibleO(q1/2) corrections cancel.
Next, for the variances of the number operator in the CS basis

(1N)2 = 〈N2〉 − 〈N〉2 (26)

we obtain by using equation (17)

(1N)2||zs 〉 −→
q→0

2q1/4 (27)

(1N)2||zr 〉 −→
q→0

1
4 + 2q1/2. (28)

As shown in figure 4, the ratio of the variance to the mean value,(1N)2/〈N〉, is very
distinct [4] from that for Poisson statistics: for step states

(1N)2

〈N〉
∣∣∣∣
|zs 〉

−→
q→0

{
4q1/2

s
→ 0 for s > 0

}
(29)

and for (mid)riser states

(1N)2

〈N〉
∣∣∣∣
|zr 〉

−→
q→0

1

2(2r + 1)
for r > 0. (30)

The approximately linear slope of〈N〉 can be partially explained by a CS argument [4].
From

〈N〉 = 2

ln q

〈
sinh

{
[N ] sinh

{
ln q

2

}}〉
(31)

a diagonal CS replacementfor large |z| of [N ] → {〈[N ]〉 = |z|2} yields

〈N〉 → αq log |z|2 + βq + O(1/|z|4) (32)

with

αq = (logq−1/2)−1. (33)

This value ofαq is a good approximation for the linear slopes displayed in figures 1–3.
However, the value ofβq must be arbitrarily chosen depending on whether the series of
points (connected by the linear line) are step and (mid)riser points, for whichβq = 1

2, or
‘quarter-riser’ points [zb]2 = [b + 3

4], etc.
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Figure 4. Behaviour of the ratio of the variance to the mean value,(1N)2/〈N〉, as |z|2 varies
for fixed q = 10−15. Also for 1

16 6 q < 1, this ratio(1N)2/〈N〉 → 0 as|z|2 → ∞, whereas
for Poisson statistics, i.e.q = 1 CSs,(1N)2/〈N〉 = 1.

2.3. ‘Jump inlog(|z|2)’ behaviour ofq-Poisson number distribution in macrodeformed
region

From theq-Poisson number distribution in the|z〉q basis,

Pq(n) ≡ | q〈z|n〉q |2

= eq(|z|2)−1

{ |z|2n
[n]!

}
(34)

we obtain by equation (17) that at step|zs |2 values fors > 0

Pq(n)||zs 〉 −→
q→0

(
1

1 + 2q1/4

)
×


1 n = s

qk
2/4 n = s ± k

k = 1, 2, . . . .

(35)

Notice that the peak position inPq(n)||zs 〉 ‘jumps’ as log(|zs |2) increases. This is, of course,
consistent with the ‘pseudo Fock-state’ interpretation of figures 2 and 3.

At the riser values of|zr |2, we find

Pq(n)||zr 〉 −→
q→0

1

2(1 + q1/2)
×



1 n = r, r + 1

q1/2k(k+1) n = r − k

k = 1, 2, . . . , r

q1/2k′(k′−1) n = r + k′

k′ = 1, 2, . . . .

(36)

Again, a ‘jump’ in the central two-peaks value occurs as log(|zr |2) is increased.

3. Phase properties

3.1. Definition of Fourier phase operators

The following phase operator definitions [4] hold both for ordinary bosons and bosonic
quasi-particles(q = 1) and more generally forq-bosons(q 6= 1). The Susskind–
Glogower (SG) Hermitian sine and cosine operators [6, 4],ĉos(φ) andŝin(φ) correspond to
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a ≡ ([N + 1])1/2êxp(iφ) with êxp(−iφ) ≡ {êxp(iφ)}†. In the occupation number basis, this
is equivalent to

êxp(iφ) =
∞∑
n=0

|n〉〈n+ 1|. (37)

The Hermitian Fourier phase operators (FPOs) are defined [13] by

ĉos(lφ) ≡ 1

2
{(êxp(iφ))l + (êxp(−iφ))l}

ŝin(lφ) ≡ 1

2i
{(êxp(iφ))l − (êxp(−iφ))l}

. (38)

For z = |z|eiθ , it follows as shown in [13] that there is a simple polar factorization of the
expectation values of these FPOs in the CS basis:

q〈z|ĉos(lφ)|z〉q = cos(lθ)Il(|z|)
q〈z|ŝin(lφ)|z〉q = sin(lθ)Il(|z|)

(39)

where the radial functions are

Il(|z|) = |z|leq(|z|2)−1
∞∑
n=0

|z|2n√
[n]![ n+ l]!

. (40)

Note [13] thatq-deformation only directly affects the radial part (the Higgs modes) and not
the phase part (the Nambu–Goldstone modes) of these FPO expectation values†.

These FPO equations (39) are exactly the same for the Pegg–Barnett Hermitian phase
operator,φ̂q [7, 4]. φ̂q is defined in an(s ′ + 1)-dimensional finite subspace

φ̂q =
s ′∑
m=0

θm|θm〉〈θm| (41)

with

|θm〉 = (s ′ + 1)−1/2
s ′∑
n=0

exp(inθm)|n〉q

θm = θ0 + 2mπ

s ′ + 1
m = 0, 1, . . . , s ′

(42)

whereθ0 is an indicial reference phase. The limits ′ → ∞ is only to be taken after the
matrix elements are calculated. Associated withφ̂q is the unitary

exp(iφ̂) ≡ |0〉〈1| + |1〉〈2| + · · · + |s ′ − 1〉〈s ′| + exp{i(s ′ + 1)θ0}|s ′〉〈0| (43)

which only differs in the last term against equation (37) for the SĜexp(iφ) operator.
Notice that the ‘window’ of eigenstates of the PB phase operatorφ̂q lies betweenθ0

andθ0 +2π . Therefore, to avoid ‘artifacts’ due to the edges of the window [14], we choose
the indicial phase

θ0 = θ − πs ′

s ′ + 1
(44)

so that in the limits ′ → ∞, the ‘window’ is centred about the phaseθ of the coherent state
|z〉, z = |z|eiθ .

† q-deformation also only directly affects the radial part of the expectation values of cos8 and sin8 in theq-spin
coherent states [15], see equation (19) in [16]. We thank Professor Zurong Yu for bringing this to our attention.
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3.2. Simple phase properties in macrodeformed region

The reader should note that in subsection 3.2.2 we discuss the effects of macroq-deformation
on two more intuitive phase quantities: the variance(1φ̂q)

2 and the normalized PB phase-
distribution function

P̄q(θm) ≡ lim
s ′→∞

(s ′ + 1)|〈θm|z〉|2. (45)

P̄q(θm) is the natural conjugate-variable analogue of theq-boson number distributionP qn (z)
discussed above, see equations (34)–(36). However, logic dictates that we begin by
discussing the effects of macroq-deformation on the radial functionsIl(|z|) for we need
some of these results to treat(1φ̂q)2 and P̄q(θm).

3.2.1. Properties of the radial functionsIl(|z|) for q 6= 1. Again by using the approximation
of equations (16) and (17) we find at the step values|zs |2

I1(|zs |)−→
q→0

2q1/8{1 − 2q1/4} s > 1 (46)

and for l > 2 ands > 1

Il(|zs |)−→
q→0

ql
2/8

{ s∑
k=1

qk/4(k−l) + 1

}
{1 − 2q1/4} (47)

so

I2(|zs |)−→
q→0

q1/4(1 + O(q)) s > 1. (48)

Likewise, at the riser|zr |2 values, we obtain

I1(|zr |)−→
q→0

1
2{1 + 2q1/4} r > 1 (49)

and for l > 2 andr > 1,

Il(|zr |)−→
q→0

1

2
ql(l−1)/8

{ r∑
k=1

qk(k−l+1)/4 + 1 + ql/4
}
{1 − q1/2} (50)

so

I2(|zr |) → q1/4{1 + O(q)} r > 2. (51)

The first- and second-order radial functions are especially important because forq 6= 1
in the |z〉q semi-classical limit where|z| → ∞, all the odd (even) orders ofIl(|z|) can be
respectively written

Il(odd) ≈ q(l
2−1)/16I1(|z|) (52)

Il(even) ≈ q(l
2−4)/16I2(|z|) (53)

as is shown in appendix B. Forq 6= 1 the functionI1(|z|) oscillates as log(|z|2) increases,
see figure 5. By equation (52), all odd ordersIl(odd) also must oscillate (for|z|2 large
enough) albeit with much decreased amplitudes. Forq 6= 1, as shown in [4],I2(|z|) does
not oscillate, but rather approaches the limitq1/4 as z → ∞; hence, by equation (53),
Il(even)(|z|) → ql

2/16 asz → ∞.
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Figure 5. For q = 10−15, the oscillatory behaviour of the first radial functionI1(|z|). For
arbitrary q and |z| values,q 〈z| cos(φ̂q )|z〉q = cosθI1(|z|) and q 〈z| sin(φ̂q )|z〉q = sinθI1(|z|)
for the q-analogue PB phase operatorφ̂q , and also for the SG Hermitian operatorŝcos(φ) and
ŝin(φ). q-deformation only affects the radial part, and not the polar part of expectation values
of Fourier phase operators in the CS basis [13].

3.2.2. Properties of(1φ̂q)2 and ofP̄q(θm) in macrodeformed region. The variance of the
PB phase operator,̂φq , can be written completely in terms of the radial functions

(1φ̂q)
2 = π2

3
+ 4eq(|z|2)−1

∞∑
n>l

(−1)n+l

(n− l)2

|z|n+l√
[n]![ l]!

= π2

3
+ 4

∞∑
l=1

(−)l
l2
Il(|z|). (54)

So by equations (52) and (53),I1(|z|) will dominate for |z|2 large; thus

(1φ̂q)
2 →


π2

3
− 8q1/8 at |zs |, s > 1

π2

3
− 2 at |zr |, r > 1.

(55)

As |z| → 0, (1φ̂q)2 → π2/3 for all q.
So for the step values,(1φ̂q)2 ≈ π2/3 which corresponds to what is expected classically

for a state of random phase. This agrees with the ‘pseudo Fock-state’ interpretation of the
step |zs〉 CSs since a pure number state also gives(1φ̂q)

2||n〉 = π2/3. for q = 10−15,
figure 6 shows how(1φ̂q)2 behaves as|z|2 varies between the step and riser values. (For
q = 10−6, the |zs | peaks’ values of(1φ̂q)2||zs 〉 ' (π2/3 − 1.42) is noticeably lower than
the maximum for log|z|2 < 0.)

The normalized PB phase-distribution can also be written completely in terms of the
radial functions

P̄q(θm) = lim
s ′→∞

(s ′ + 1)|〈θm|z〉|2

= 1 + 2
∞∑
l=1

cos{l(θ − θm)}Il(|z|). (56)
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Figure 6. Behaviour of the variance of(1φ̂q)2 of the q-analogue Pegg–Barnett phase operator
as |z|2 varies for q = 10−15. For comparison, note that for116 6 q < 1, this ratio

(1φ̂q)
2 →∼ (1/2ηq)2 for |z|2 > 10 where numericallyηq ' (q-dependent constant), whereas

for q = 1, (1φ̂q)2 → 1/(4|z|2) for |z|2 > 10. In the limitq → 0, at |zs〉 values where〈N〉 ' s,
(1φ̂q)

2 → π2/3 corresponding to completely random phase distribution; whereas at the|zr 〉
‘riser’ values(1φ̂q)2 → (π2/3 − 2).

So for large|z| values,

P̄q(θm) →
{

1 + 4q1/8 cos(θ − θm) at |zs |, s > 1

1 + cos(θ − θm) at |zr |, r > 1.
(57)

For q = 10−15, 4q1/8 = 0.053 which characterizes the departure from a completely random,
i.e. flat, distribution, see figure 7. (Note that forq = 10−6, 4q1/8 = 0.71 so then there is a
very noticeable departure from randomness.)

Figure 7. For q = 10−15, the q-boson Pegg–Barnett normalized phase distribution function
P̄q (θm), see equation (45), for the step|zs〉 values and riser|zr 〉 values.
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4. Number-phase uncertainty relation

For the PB phase operator,φ̂q , there is the number-phase uncertainty relation [7, 4]

(1N)2(1φ̂q)
2 > 1

4|〈[N, φ̂q ]〉|2. (58)

For 1
16 < q < 1 it was shown in [4] that [N, φ̂q ] ≈ i and that this uncertainty relation

equation (58) is approximately minimized by the|z〉q CSs for |z|2 > 10. However, with
sufficient (extreme) numerical resolution, one discovers that forq near but not equal to
1, both sides of the uncertainty relation equation (58) actually oscillate. For instance, for
q = 10−1 the amplitude of the oscillation about1

4 in the region∼ 2.5 < log |z|2 is (amp.)
∼ 5 × 10−14, with period in(log(|z|2) ∼ 0.5 in agreement with equations (14) and (15).

In the region of macroq-deformation, we again evaluate both sides of equation (58)
and find

(1N)2(1φ̂q)
2 →


2q1/4

(
π2

3
− 8q1/8

)
at |zs〉(

1

4
+ 2q1/2

) (
π2

3
− 2

)
at |zr〉

(59)

1
4|〈[N, φ̂q ]〉|2 →

{
q1/4 at |zs〉
1
4(1 + 2q1/4) at |zr〉.

(60)

Consequently, forq = 10−15 (as shown in figure 8) at the step values both sides of
equation (58) approximately vanish as is expected since|zr〉 ≈ eirθ |r〉. At the riser values
there is in contrast a finite gap of{

(1N)2(1φ̂q)
2 − 1

4
|〈[N, φ̂q ]〉|2

}∣∣∣∣
|zr 〉

−→
q→0

3

4

{(π
3

)2
− 1

}
(61)

soN and φ̂q are no longer ‘almost canonically conjugate operators’ in the region of macro
q-deformation. (Forq = 10−6, the range of the oscillatory behaviour is somewhat different
[11] (against figure 8) in that there is a finite separation between the two curves which
varies between 0.01 and 0.05 as log(|z|2) increases with1

4|〈[N, φ̂q ]〉|2 >∼ 0.09 for all
log(|z|2) >∼ 1.)

In appendix C, we discuss the properties of the Carruthers–Nieto (number-phase)
uncertainty relations in the macrodeformed region for both the SG and the PB phase
operators.

5. Concluding remarks

5.1. Commutation relations andq ↔ 1/q symmetry

The basicq-boson commutation relations

aa† − q±1/2a†a = q∓N/2 (62)

and q-deformed bracket [x] are both symmetric underq ↔ 1/q. Equivalent to
equations (62), one has the two equations

a†a = [N ] aa† = [N + 1]. (63)

In the bosonicq → 1 limit equations (63) reduce directly to the usual bosonicN ≡ a†a and
aa† = a†a + 1. So the two equations (62) codify a specific one-parameter generalization
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Figure 8. For q = 10−15, behaviour of both sides of the uncertainty-relation inequality
(1N)2(1φ̂q)

2 > 1
4 |〈[N, φ̂q ]〉|2 as log(|z|2) increases.

(or deformation) of the definition of the number operatorand the bosonic commutation
relation†.

However,q-boson statistics are more than simply a one-parameter generalization: they
are statistics which are also invariant under a discrete symmetry,q ↔ 1/q. The treatment of
macroq-deformation in the present paper, for instance, preserves thisq ↔ 1/q invariance,
and so, when one setsq = 10−15 for a plot, this is mentally not to be distinguished from
settingq = 1015. In nature, it may be thatq ↔ 1/q invariance is not exact but is broken in
one or more ways, much like nature breaks symmetries of other quantum mechanical models
such as in exploiting the azimuthal quantum number,m, to break the intrinsic rotational
invariance and space-inversion invariance (parity) of the mathematical formulation for the
Schr̈odinger hydrogen atom or for the Heisenberg ferromagnet.

5.2. Fractional uncertainties and measurability of macrodeformed signatures

In [4] it was shown that in the CS basis the fractional uncertainties for most canonical
operators (momentum, position, amplitude, phase) which characterize the quantum field go
as

lim
|z|→∞

1Ô

〈Ô〉 →∼ λ1/2(|z|)
|z| (64)

in the |z〉q ‘classical limit’ where|z| is large, and that for allz values theq-boson resolution
function appearing in equation (64)

λ(z) = (q−1/2 − 1)|z|2 + {eq(q1/2|z|2)/eq(|z|2)}. (65)

So for 0< q < 1, i.e. for the macrodeformed region,

lim
|z|→∞

1Ô

〈O〉 → {∼ q−1/4 � 1} (66)

† In the ‘b’ representation,bb† − qb†b = 1 and [N ]b ≡ b†b where [x]b ≡ (1 − qx)/(1 − q). Thus, in the
macrodeformed region,q � 1, [x]b ≈ qx−1, whereas from equation (5) for the ‘a’ representation of equations (62),
[x] ≈ q(x−1)/2. Hence, the results obtained in the present paper also follow in the ‘b’ representation; in particular
〈z|Nb|z〉 displays a stair function behaviour forq � 1.
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unlike for ordinary bosons in the CS basis. However, since the difference in adjacent steps
in figures 2 and 3, etc. go as

|zs+1|2 − |zs |2 →∼ q−1/2 (67)

in an actual experiment the number signatures displayed in the equations and figures in this
paper are expected not to be entirely masked, though smeared, by this more-quantum-like
behaviour of1Ô for q 6= 1.

In this context it perhaps should be emphasized that while for simplicity the figures in
this paper present the stair function and other signatures of macroq-deformation for small
mean values of〈N〉 and small log(|z|2) values, the same signatures hold analytically for
orders of magnitude larger values. In which case there is stronger physical justification
for the reliability of treating cooperative quasi-particle behaviour by a CS description since
in successful CS applications to known physical bosonic systems both|z| and 〈z|N |z〉 are
large.

5.3. Macrodeformed model

The most remarkable outcome of analysing theq → 0 limit of the q-bosonic commutation
relations, equations (62), is that it provides, at least, a simple mathematical model which
combines features from two distinct physical regions in the ordinary bosonic case: one a
quantum mechanical limit with|n〉 states and other a semi-classical limit with|z〉 states with
|z| large. For macroq-deformation, on the one hand, the step|zs〉 and (mid)riser states|zr〉
do have a simple approximate Fock description, but yet to satisfy the basis CS requirement
thata|z〉q = z|z〉q , every|z〉q coherent state must still have a component in each occupation
state. The quantum-mechanical price of this decreased uncertainty in the mean number of
particles

lim
|z|→∞

(1N)2

〈N〉 → 0 (68)

when q departs from unity is the greater fractional uncertainties of the other canonical
physical quantities describing the quantum field theoretic system.

5.4. Role of deformation parameter ‘q ’

In the limit q → 0, the stair functionSq(log(|z|2)) → 2(log(|z|2)), the Heaviside step
function, which is a fermionic ‘coherent state’ system [17] since〈N〉 = 0 or 1. Also,
I1(|z|) → |z|/(1 + |z|2) andIl(|z|) → 0, l > 2.

Note that this limit is not taken at the creation and annihilation operator level, rather the
limit is at the coherent state level. This behaviour of〈N〉 is consistent with the observation
that asq → 0

|z〉 ≈ N(z)

(
|0〉 + z

[1]!
|1〉 + negligible

)
(69)

−→
(

1

1 + |z|2
)1/2

(|0〉 + z|1〉) (70)

since [n] → ∞ for n > 2. The manifestq ↔ 1/q symmetry is lost, however, in the second
expression, equation (70). Note that due to manifestq ↔ 1/q symmetry, there is onlyone
fermionic |z〉q in the macrodeformed limit, i.e. not ‘two’ such states.
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Thus, the role of the deformation parameterq, and of the associated concept ofq-
bosons, is to enable a simple and smooth interpolation between the classic bosoniccoherent
states(q = 1) and the fermioniccoherent states(q = ∞ or 0).
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Appendix A. A ‘stair’ functional

Using the Heaviside step functional,2(x ′), it is simple to introduce a ‘stair’ functional

S(a, b, c; x) ≡ a

∞∑
l=0

2(x − lb − c) (A1)

so that forq <∼ 10−6

〈N〉 ≡ 〈z|N |z〉 ≈ Sq(log(|z|2)). (A2)

Here, in equation (A2),

Sq(x) ≡ S(1,− 1
2 logq, 0; x) (A3)

with

c = 0 (beginning of first step)

b = log(|zs=1|2) (length of each step)

= log([2]) ' − 1
2 logq

a = 1 (height of each step).

Appendix B. Bifurcation in the structure of the radial functions Il(|z|) for l(odd) and
l(even) whenq 6= 1

For q 6= 1, we respectively defineψm(odd)(|z|) andψn(even)(|z|) by

ψm(|z|) =
∞∑
r=0

|z|2(r+(m−1)/2)

[r]!
√

[r +m]!/[r]!
m(odd) > 1

ψn(|z|) =
∞∑
r=0

|z|2(r+(n−2)/2)

[r]!
√

[r + n]!/[r]!
n(even) > 2

(B1)

so

Im(|z|) = |z|eq(|z|2)−1ψm(|z|)
In(|z|) = |z|2eq(|z|2)−1ψn(|z|).

We change variables to the positive integersα andβ:

α =


m− 1

2
m odd

n− 2

2
n even

β = r + α.
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Thereby,

ψm(|z|) =
∞∑
β=α

|z|2β
[β]!

√
[β + 1]

√(
[β]![β + 1]

[β + α + 1]!

) (
[β]!

[β − α]!

)

=
∞∑
β=α

|z|2β
[β]!

√
[β + 1]

√
[β]

[β + α + 1]

[β − 1]

[β + α]
· · · [β − α + 1]

[β + 2]

≈ q1/4α(α+1)
∞∑
β=α

|z|2β
[β]!

√
[β + 1]

(B2)

and

ψn(|z|) =
∞∑
β=α

|z|2β
[β]!

√
[β + 2][β + 1]

√(
[β]![β + 1]

[β + α + 2]!

) (
[β]![β + 2]

[β − α]!

)

=
∞∑
β=α

|z|2β
[β]!

√
[β + 2][β + 1]

√
[β]

[β + α + 2]

[β − 1]

[β + α + 1]
· · · [β − α + 1]

[β + 3]

≈ q1/4α(α+2)
∞∑
β=α

|z|2β
[β]!

√
[β + 2][β + 1]

(B3)

by the identity

[l + x]

[l + y]
≈ q(y−x)/2 (B4)

which holds for largel and smallq. So

Il(odd)(|z|) ≈ q(l
2−1)/16{I1(|z|)− eq(|z|2)−1P

(1)
l (|z|)}

P
(1)
l (|z|) ≡

(l−3)/2∑
r=0

|z|2r+1

[r]!
√

[r + 1]
l(odd) > 1 (B5)

and

Il(even)(|z|) ≈ q(l
2−4)/16{I2(|z|)− eq(|z|2)−1P

(2)
l (|z|)}

P
(2)
l (|z|) ≡

(l−4)/2∑
r=0

|z|2r+2

[r]!
√

[r + 2][r + 1]
l(even) > 2 (B6)

whereP
(1)
l andP

(2)
l areO(|z|l−2) polynomials. For finite|z|, corrections to equation (B4)

can be important.

Appendix C. Behaviour of Carruthers–Nieto number-phase uncertainty relations as
q → 0

The Carruthers–Nieto uncertainty relations [10] were originally derived for the SG phase
operators. However, as shown below, for|z|2 sufficiently large, the differences in applying
these uncertainty relations to the PB and SG case are in fact negligible because such
differences go aseq(|z|2)−1.
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C.1.Q(|z|, θ)
For z = |z|eiθ , there is theθ -dependent uncertainty relation

Q(|z|, θ) = (1N̂)2(1ŝin(φ))2

|〈ĉos(φ)〉|2 > 1

4
(C1)

with

(1ŝin(φ))2 = 〈{ŝin(φ)}2〉 − (〈ŝin(φ)〉)2

where in the SG case

〈{ŝin(φ)}2〉 = 1
2 − 1

2 cos(2θ)I2(|z|)− 1
4eq(|z|2)−1

(〈ŝin(φ)〉)2 = sin2 θI1(|z|)2 etc
(C2)

in terms of the universalI1,2(|z|) radial functions. In the PB case, the only difference is
the absence of the14eq(|z|2)−1 term which is negligible for|z|2 large. Therefore, in the SG
case,Q(|z|, θ) → (4 cosθ)−1 as |z|2 → 0 for all q.

In the region of macrodeformation, for|z|2 sufficiently large in both the PB/SG cases
by equations (43)–(53)

Q(|z|, θ)−→
q→0


(4 cos2 θ)−1 at |zs |, s > 1

2 − sin2 θ

4 cos2 θ
at |zr |, r > 1

(C3)

which agrees with figure 9.

Figure 9. For q = 10−15, behaviour of the minimization functionQ(|z|, θ) ≡
(1N)2(1ŝin(φ))2/〈ĉos(φ)〉2 > 1

4 as a function of|z|2 for various values of the phaseθ . Only
for q = 1 isQ(|z|, θ) minimized for |z|2 > 80.

In figure 9 forQ(|z|, θ), as well as in figure 10 forU(|z|), a maxima in these distributions
against log(|z|2) occurs before the dip at the step value|zs |2 = [s+ 1

2] and another, of equal
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Figure 10. Behaviour of the Carruthers–Nieto minimization functionU(|z|) > 1
4 , defined in

equation (C12), as log(|z|2) increases for fixedq = 10−15. Only for q = 1 isU(|z|) minimized
for |z|2 > 80.

height, occurs after it and before the mid-riser value|zr |2 = [r + 1]. In the q → 0 limit,
these positions correspond respectively to ‘three-quarter’ riser values of

|za|2 = [a + 1
4] a = 1, 2, . . .

≈ q
− 1

2a+
3
8

(1 − q)
(C4)

and to ‘quarter’ riser values of

|zb|2 = [b + 3
4] b = 1, 2, . . .

≈ q
− 1

2b+
1
8

(1 − q)
. (C5)

Notice that these ‘fractional’ riser values are ‘fractions’ in the log10 |z|2 units of the
horizontal axis in the figures. At|za|2 = [a + 1

4], using the equation (17) approximation,

eq(|za|2) = [a + 1
4]a

[a]!
{1 + q1/8 + · · ·} (C6)

and

〈N〉 → a − q1/8 + · · · (1N)2 → q1/8

I1 → q1/16(1 + O(q3/8)) I2 → q1/4(1 + q1/8).
(C7)

Thus, at|za|2 values, asq → 0

Q → 1

2 cos2 θ
U → 1 Q′ → 1

2. (C8)

Note that the ‘three-quarter’ riser value|za|2, 〈N〉 lies below theath step by onlyq1/8 unlike
for the mid-riser point at|zr |2 where〈N〉 → (r + 1

2) as per equation (25). Similarly, at the
‘quarter’ riser values,〈N〉 lies above thebth step byq1/8. So, indeed, the steps become
flatter and longer asq → 0.
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At |zb|2 = [b + 3
4], it follows that

eq(|zb|2) = [b + 3
4]b

[b]!
{1 + q1/8 + · · ·} (C9)

and

〈N〉 → b + q1/8 + · · · (1N)2 → q1/8

I1 → q1/16(1 + O(q3/8)) I2 → q1/4(1 + q1/8).
(C10)

Thus, at|zb|2 theQ, U , andQ′ limits as q → 0 are also as in equation (C8). Notice in
figures 9 and 10 that for finiteq = 10−15 the actual peak positions and peak values inQ

andU corresponding to|za|2 and |zb|2 are shifted from (C4), (C5) and (C9) towards the
mid-riser values. For [11] the largerq = 10−6, the shifting in the peak’s value is almost
complete inU .

C.2. U(|z|)
Similarly, since in the SG case

〈{ĉos(φ)}2〉 = 1
2 + 1

2 cos 2θI2(|z|)− 1
4eq(|z|2)−1 (C11)

we find

U(|z|) = (1N̂)2

{
(1ŝin(φ))2 + (1ĉos(φ))2

〈ŝin(φ)〉2 + 〈ĉos(φ)〉2

}
> 1

4

= (1N̂)2

{
1 − I1(|z|)− 1

2eq(|z|2)−1

I1(|z|)2
}

(C12)

with the eq(|z|2)−1 terms in equations (C11) and (C12) again absent in the PB case. So
again,U(|z|) → 1

2 as |z|2 → 0 for all q in the SG case. For|z| sufficiently large, in both
PB and SG cases, asq → 0

U(|z|) →
{

1
2 at |zs |, s > 1
3
4 at |zr |, r > 1.

(C13)

C.3.Q′(|z|, θ)
In the macrodeformed region the uncertainties in1ŝin(φ) and1ĉos(φ) are correlated for
both the SG and PB phase operators. This can be seen by considering the function

Q′(|z|, θ) ≡ 1ŝin(φ)1ĉos(φ) > 1
4eq(|z|2)−1. (C14)

In terms ofI1,2(|z|)
4{Q′(|z|, θ)}2 = {1 − (I1(|z|))2 − 1

2eq(|z|2)−1}2 − cos2(2θ){I2(|z|)− (I1(|z|))2}2. (C15)

In the PB case, theeq(|z|2)−1 terms are absent in both expressions. So, in the SG case,
Q′ → 1

4 as|z|2 → 0 for all q. In the region of macrodeformation, for|z|2 sufficiently large
in both the PB/SG cases

Q′(|z|, θ)−→
q→0

{
1
2 at |zs |, s > 1
1
8(9 − cos2 2θ)1/2 at |zr |, r > 1

(C16)

which agrees with figure 11 forq = 10−15. (At q = 10−6, Q′(|zr |) ' 0.44, and near the
|zr | values the oscillations do not flatten out.)
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Figure 11. For q = 10−15, behaviour of the product of the uncertainties of theq-analogue SG
sine and cosine operators,Q′(θ) ≡ 1ŝin(φ)1ĉos(φ). The associated SG operators,̂sin(φ) and
ĉos(φ), are strongly correlated and non-classical in theq < (∼ 10−6) region. In fact, only for
q = 1 doesQ′(θ) vanish for|z|2 > 80.

This strong correlation in sin̂φq and cosφ̂q for q 6= 1 is to be expected since for|z|2 > 80
the PB phase distribution̄Pq(θm) is no longer (approximately) a Diracδ distribution, but
insteadP̄q(θm) has finite width.

Appendix D. Further properties of macrodeformed CSs

For an approximate state interpolating between|zs〉 and |zr〉 there is

|zA〉 = eisθ N̄A

{
|s〉 + z

[s + 1]1/2
|s + 1〉

}
N̄A = (1 + |z|2[s + 1]−1)−1/2 (D1)

with 〈zA|[N ]|zA〉 = |z|2 anda|zA〉 = z|zA〉. Note against the (mid)riser state, equation (19),
in |zA〉 the fixed superposition of|s〉 and |s + 1〉 involves the modulus,|z|, and the phase
θ of z = |z|eiθ . For instance, the approximate Fock states associated respectively with|za〉
and the quarter riser|zb〉 of equations (C4) and (C5) are obtained by insertingza and zb,
into equation (D1). Fraction-in-〈N〉 riser states can also be constructed with|z|2 invariant
underq ↔ 1/q: for example, withL(even) andm(odd) = 1, 3, . . . , L− 1, define

|zL,ms |2 ≡
(

m

L−m

)
[s + 1] (D1a)

so by equation (D1)

|zL,ms 〉 → 1√
L

eisθ
(√
L−m|s〉 + eiθ√m|s + 1〉

)
(D1b)

with

〈N〉 → s + m

L
(1N)2 → m

L

(
1 − m

L

)
. (D1c)

In terms of the PB phase state basis, see equation (42), approximate Fock-state forms for
the step and riser states are respectively

|zs〉 → 1√
s ′ + 1

s ′∑
m=0

eis(θ−θm)|θm〉 (D2)
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|zr〉 → 1√
2(s ′ + 1)

s ′∑
m=0

{eisθ(θ−θm) + ei(s+1)(θ−θm)}|θm〉 (D3)

whereas

|zA〉 → N̄A√
s ′ + 1

s ′∑
m=0

{
eis(θ−θm) + |zA|

[s + 1]1/2
ei(s+1)(θ−θm)

}
|θm〉. (D4)

The coefficients in these equations give the simple forms of the〈θm|zi〉, i = s, r, A,
amplitudes which occur asq → 0.

The time evolution of|z〉q is the same as for the usualq = 1 CSs if theN -Hamiltonian
HN ≡ h̄ω(N + 1

2) is responsible for the time evolution because

|z, t〉 = exp(−iHNt/h̄)|z〉 = exp(−iωt/2)|z(t)〉
wherez(t) = |z| exp{i(θ − ωt)}. So ignoring the overall exp(−iωt/2) phase factor from
the vacuum state energy, time evolution corresponds to the substitutionθ → (θ − ωt): for
instance,

〈z(t)|Q̂|z(t)〉 = (2h̄/ω)1/2|z| cos(θ − ωt)

and

〈z(t)|P̂ |z(t)〉 = (2h̄ω)1/2|z| sin(θ − ωt)

with time-independent variances

ω

h̄
(1Q̂)2 = 1

h̄ω
(1P̂ )2 = λ(|z|)

and minimum uncertainty

21Q1P = |〈[Q,P ]〉| = ih̄λ(|z|).
The time evolution of|zs〉 is approximately that of the ordinarysth level elementary
harmonic oscillator state and of|zr〉 (and |zA〉) is approximately that of the superposition
of the two adjacent|r〉 and |r + 1〉 levels (with time-independent probabilities to be in|r〉
and |r + 1〉).

In contrast, the quadratiĉP , Q̂ HamiltonianHP,Q ≡ 1
2(P̂

2 + Q̂2) doesnot possess
conventional free-field properties with simple, orthodox physical interpretations, see the
discussion in [4].
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